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Abstract This paper is concerned with the application of a Hybrid Algorithm (HA) to
the determination of the Thermodynamic Activation Parameters (ATP) of a kinetic sys-
tem of first order consecutive reactions. The 8 ATP’s parameters involved in the Arrhe-
nius and Eyring equations have been directly determined from the non-isothermal
kinetic data without prior knowledge of the rate constants. AH is constituted by a
combination of two algorithms based on different mathematical principles which are
sequentially applied. In a first step, a “soft modeling” method of Artificial Neural
Networks (ANN) is applied and the obtained values of ATP’s parameters are used as
initial estimates of a new optimization algorithm (AGDC) applied in a second stage
to improve the values of the final parameters. The great success of HA is the efficient
resolution of the ambiguity of the results obtained by ANN. In addition, comparing
with the classic algorithms, which present the known weak points, HA offers important
advantages: (a) the lack of necessity to know a priori the initial estimates since they
are calculated from ANN application, (b) the low probability of being trapped at local
minima, saddle points, etc. by means of the exhaustive control and suitable correction
of the movement vector during the optimization process, and (c) the simultaneous
determination of a higher number of parameters endowed with very different orders
of magnitude.
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1 Introduction

The classic method to obtain the values of the Activation Thermodynamic Parame-
ters (ATP) of a chemical reaction consists in the previous determination of the pairs
of values of the rate constant k(T) from the isothermal kinetic experiences at dif-
ferent temperatures. Posteriorly, all pairs are fitted to straight lines by using Linear
Regression, according the linearized Arrhenius and Eyring equations [1]. From each
individual k(T) of each single reaction, we determine the values of the pre-exponential
Factor (A) and the Activation Energy (E) from Arrhenius equation and the Activa-
tion Enthalpy (�H�=) and the Activation Entropy (�S�=) from the Eyring’s equation,
obtained from the Transition-State Theory (TST).

As for kinetic systems formed by “r” reactions with kr(T) rate constants, the proce-
dure consists in the application of hard modeling methods in order to set up the system
of ordinary differential equations (ODE). After solving them, the explicit mathemati-
cal expressions of the concentrations of all species involved in the kinetic system can
be determined on the basis of kr(T) and time [2]. By using experimental data from
a kinetic isothermal set carried out to different temperatures, the values of kr(T) can
be calculated fitting the data to these explicit functions. Finally, the ATP’s values are
determined from the pairs of values kr/T. This method leads to significant drawbacks:
(a) a calculation of a high number of parameters is required, as it happens in our
case of the consecutive reactions, where 8 ATP parameters have to be determined,
(b) frequently, the ODE system doesn’t provide exact mathematical solutions, so the
kr(T) cannot be directly obtained and, therefore, ATP’s values also remain unknown.
Approaches (i.e. Steady State method) can be used to determine the values of the rate
constants but the final ATP’s values are not accurate at all, (c) a big amount of exper-
imental work at the laboratory is needed to determine a reduced collective of value
pairs kr(T)/T, (d) it is also very common the necessity of knowing the values of other
non kinetic magnitudes (i.e. equilibrium constants, etc.), which must be previously
obtained by performing an additional task.

As a result of the foregoing, it is more convenient to design a new method to find
directly the ATP’s values without a previous determination of the rate constants. This
new one requires to acquire a large amount of experimental information, as the data
from the non-isothermal kinetics, which provide a more numerous set of data and final
results more accurate. Therefore, in order to obtain the ATP’ values, it is necessary to
design a new algorithm of computational treatment, as the one proposed on the present
work.

The computational determination of the parameters involved in mathematical func-
tions is usually carried out by means of mathematical optimization methods applying
numeric second order gradient algorithms [3]. These non-linear iterative fitting tech-
niques are particularly used in Chemistry as well as other fields of Science. However,
one of the most drawbacks of these optimization methods is their high sensitivity to
the initial estimates of the supplied parameters. Only if these values are very close
to the global minimum can a fast and reliable convergence of the iterative process be
expected, guaranteeing success of the parameter optimization. If the initial estimates
are far from the global minimum the process may become divergent or reach a singular
point (“local minimum”, “saddle point”, etc.), leading the optimization process to fail.
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This often happens in the treatment of kinetic models when the number of parameters
to be optimized is moderately high. Additionally there is a series of problems involving
identifiability and distinguishability [4,5], which lead to different types of ambiguity
in the solutions to the stiff systems of ordinary differential equations (ODE). In light of
this, it would seem appropriate to design and apply a new method that, initially, would
provide an approach to the global optimum and then use such results as a starting point
to apply a robust gradient method that will guarantee the success of the mathematical
optimization of parameters.

In the present work we designed and successfully applied to the kinetic system
of consecutive reactions, a new Hybrid Algorithm (HA) able to determine the ATP’s
values directly from non-isothermal kinetic data without the need of determining the
rate constants in a previous step.

A HA is the one in which 2 or more different algorithms are combined in order
to solve the same mathematical problem. Depending on data, the HA can perform
by means of choosing the algorithm that fits better the data or switching between
them during the whole application process. This second way corresponds to the HA
proposed in this work. The final objective is to reach the combination of the most
appropriate characteristics of each one, so the general overall HA can perform better
than individual components. The HA refers not only to a combination of multiple
algorithms to solve a different problem. In fact, many algorithms can be consid-
ered themselves as combinations of simple pieces. HA is a combination of algo-
rithms that solve the same problem but differ in their characteristics, particularly in
efficiency.

The HA proposed in this work comprises two algorithm based on different math-
ematical principles in which sequential application is carried out. A “soft modeling”
method is applied by using Artificial Neural Networks (ANN) [6], which presents the
valuable advantage of making the use of initial estimates of the parameters unnec-
essary. The final objective is to determine the parameter values (outputs) in the
neighborhood of the optimum global. These values have been used as the initial
estimates values of a robust and efficient numeric second order gradient algorithm
(AGDC) [7], able to reach the desired global minimum to guarantee the success of
the final optimization of the parameters. The application of HA to the kinetic sys-
tem of consecutive reactions provides several important advantages since the direct
optimization of those parameters became possible, with no need of calculating the
rate constants kr(T) in previous steps. It must be considered that 8 ATP parame-
ters are involved in the studied kinetic system of consecutive reactions, representing
a very elevated number of parameters to be determined. The treatment requires to
acquire the kinetic data from non-isothermal kinetic experiments, imposing a con-
trolled variation of temperature along the reaction kinetic. The number of the set of
kinetic data computed in the classic isothermal procedure is very small since it is
limited by experimental conditions, when dealing with a low number of isothermal
experiments (normally, 10–12), each of them performed at a different temperature.
In the case of non-isothermal experiments, a single replicate kinetic experiment is
enough since it allowed the computation of a huge set of kinetic data which, bearing
in mind the laboratory time and the amount of reagents saved, is a great and important
advantage.
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The literature contains several recent references of the AGDC mathematical opti-
mization algorithm that is a symbolic second-order gradient method that performs
a rigorous analysis and control of the movement vector and of each of its terms.
The numeric version of this algorithm was designed and successfully implemented at
our laboratory within the field of Chemistry in the treatment of many systems with
kinetic, analytical and thermodynamic purposes. Thus computational applications
have developed for the quantitative analysis of static (SMM) and dynamic (DMM)
multicomponent mixtures [7,8] or for the determination of kinetic constants in differ-
ent reaction mechanisms after the application of the numerical computational program
KINMODEL(AGDC) [9]. In this type of joint optimization of several parameters the
problem of ambiguity in the solution is analyzed in reaction mechanisms comprising
first-order reactions since it is common to find several (two or more) groups of para-
meters that fit the experimental kinetic data. The AGDC algorithm has also been used
for the determination of the initial concentrations of the species involved in the reac-
tion mechanism, individually or jointly, with the kinetic constants of the elementary
reactions comprising the mechanism [10]. In this paper there is analyzed the influ-
ence of a series of factors affecting the optimization process and in addition there is
studied the possibility of the existence of ambiguity in the solutions, since parame-
ters of different natures and orders of magnitude are determined. Recently a novel
“hard-modeling” computational approach, based in the algorithm AGDC(MW) [11],
is proposed for the simultaneous optimization of the rate constants and molar absorp-
tion coefficients. The approach is the result of combining 3 different strategies based
in 3 versions of AGDC and an evident improvement in the values of the optimized
parameters has been obtained in comparison with the application of a single strategy.
Several authors have applied Hybrid Algorithms (HA) in the field of Chemistry in
the literature that essentially comprises Genetic Algorithms (GA). Their design and
application are currently able to solve problems pending solution and reveal the high
degree of reliability and precision in the results obtained. Of interest is one review
[12] in which the authors consider a broad range of applications of different types
of GA in Chemometrics: Maeder et al. [13] determine the rate and equilibrium con-
stants of reaction mechanisms by application of a HA based on a GA. Hervás et al.
[14] use GA and pruning computational neural networks for selecting the number of
inputs required to correct temperature variations in kinetic-based determinations. Arti-
ficial Neural Networks offer a versatile “soft modeling” method that can be applied in
diverse fields with acceptable results [15]. The method is applied for quantitative pur-
poses, among others, in the so-called Principal Component Analysis (PCA) method,
in which there are no explicit functions of multivariate correlation or, if there are,
they are extraordinarily complex. The application of ANN (alone or combined with
a mathematical optimization algorithm) in chemical kinetics when a single chemical
reaction is considered, [16–18] can provide acceptable results. However, it is nec-
essary to perform an exhaustive process of training of the neural network in order
to obtain its optimal architectures, meaning that the method is time-consuming and
tedious and that it cannot be used individually in all cases. Nevertheless, it is an ideal
method for carrying out the approximation of the ATP’s values to those of the global
minimum, without previously knowing anything about the magnitude and sign of the
parameters.
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2 Theoretical aspects

2.1 Kinetic and thermodynamic aspects in non-isothermal kinetics

Let us consider in general a chemical system formed by nr chemical elementary reac-
tions where ns chemical species can be involved. According to IUPAC’s norms [19],
the r-th chemical reaction can be expressed for the generic equation

0 =
ns∑

j=1

ν j,r B j (1)

where, Bj represents the chemical species involved in the system of reactions; r =
(1, . . . , nr), the number of chemical reactions; j = (1, . . . , ns), the number of chemical
species; νj,r, the stoichiometric coefficient of the species Bj in the r-th reaction; νj,r < 0
when Bj plays only the role of reactant in the r-th reaction and νj,r > 0 when Bj plays
only the role of product in the r-th.

When the reaction is an elementary or concerted one, the absolute values of the
kinetic order (zl,r) and stoichiometric coefficient of Bj coincide, that is

∣∣νl,r
∣∣ = ∣∣zl,r

∣∣.
The rate differential equation of the chemical species Bj in the r-th is given by

d
[
B j
]
/dt = krν j,r

ns∏

l=1

[Bl ]|zl,r | (2)

where Bl are the species playing only the role of reactants in the r-th reaction (νl,r < 0)

and kr is the kinetic rate constant of the r-th reaction. Each chemical species can take
part in several reactions and the rate differential equations will be the sum extended
over those reactions where the reactant Bl appears, obtaining a system of ordinary
differential equations (ODE) according to the generic equation,

d
[
Bj
]
/dt =

nr∑

r=1

krν j,r

ns∏

l=1

[Bl]|zl,r| (3)

The general solution of the system of rate ODE give the explicit function of the con-
centrations of the all species with time ([B j ]ti ). If the experimental data are expressed
in absorbance, we have to consider the Lambert–Beer–Bouguer law:

Aλ
j,ti = ελ

j · [B j ]ti (4)

where Aλ
j,ti

is the absorbance of the species Bj at the, time ti and path length 1 cm and

ελ
j is the molar absorption coefficient of Bj at the wavelength λ. The absorbance of

the mixture (Aλ
T,ti

) measured at wavelength λ, time ti and temperature T and, can be
expressed as:

Aλ
T,ti =

ns∑

j=1

Aλ
j,ti =

ns∑

j=1

ελ
j · [B j ]ti (5)

123



J Math Chem (2015) 53:1080–1104 1085

The chemical system formed by 2 first order consecutive reactions has been studied
in the present work and can be represented according to Eq. (1), as

ν1,1 B1
k12→ ν2,1 B2

ν2,2 B2
k23→ ν2,3 B3

Considering ν1,1 = ν2,2 = −1 and ν2,1 = ν2,3 = 1, we have the first order
consecutive reactions system studied in this work.

B1
k12→ B2

k23→ B3

According this, the system of ordinary differential equations (ODE) can be expressed
using matrix notation as

d/dt

∣∣∣∣∣∣

[B1]
[B2]
[B3]

∣∣∣∣∣∣
=
∣∣∣∣∣∣

−k12(T ) 0 0
k12(T ) −k23(T ) 0

0 k23(T ) 0

∣∣∣∣∣∣

∣∣∣∣∣∣

[B1]
[B2]
[B3]

∣∣∣∣∣∣
(6)

2.1.1 Solution of the first differential equation of the ODE system

The first rate differential equation of the ODE system (6) is

d[B1]/dt = −k12 (T ) [B1] (7)

that can be individually solved taken in account that only depends of [B1]. It is con-
venient to consider here the general kinetic treatment of a chemical reaction in non
isothermal conditions.

ν1 B1 → Products (8)

The rate differential equation to this reaction, expressed in function of the extent of
reaction variable in units of molar concentration (ξ ′

1) when the reactant B1 obey to a
first order kinetic, can be written as:

dξ ′
1/dt = k12 (T ) ([B1]0 − |ν1| ξ ′

1) (9)

where [B1]0 is the initial concentration of B1 species and k12 (T ) is the rate constant, a
function of T in non-isothermal conditions. Separating variables and after integration
of the first member of the equation, we have,

− (1/ |ν1|) ln
{(

[B1]0 − |ν1| ξ ′
1)/ [B1]0

)} =
∫ t

0
k12 (T ) dt (10)
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The Activation Energy, (E12) and the pre-exponential Factor (A12) can be deter-
mined substituting k12(T) in Eq. (10) according the Arrhenius equation, where α1 is
the remaining molar fraction of the reactant B1.

− (1/|ν1|) ln α1 =
∫ t

0
A12e−E12/RT dt (11)

In non-isothermal conditions, the second member of Eq. (11) cannot be integrated since
there are two dependent variables [T = f(t)]. It will be crucial to establish the identity
of this function because the mathematical method of resolution of the Eq. (11) will be
different. However 2 requirements must be met: the function must be monotonically
increasing, since is this way it will be possible to minimize the great differences in
the reaction rate existing between the beginning and the end of the reaction; the rate
of heating must be suitable for the interval of time studied and its profile must be
reproducible in the laboratory. In order to choose a variation type T/t we consider two
possibilities for the function:

1. hyperbolic branch

1/T = (1/T0) − mt (12)

which leads to the following equation:

− (1/|ν1|) ln α1 =
∫ t

0
A12e−E12/R[(1/T0)−mt]dt (13)

This hyperbolic function has a priori a great advantage since the primitive function of
the integral of the Eq. (13) exists being the mathematical exact solution the following
expression:

α1 = e−[(|ν1|A12 R/m E12)
(
e−E12/RT0

)(
e(m E12/R)t −1

)] (14)

However 2 considerations must be done: (i) the explicit function of α1 depending
on the time (14) is not simple and there is necessary the application of a method of
sufficiently robust treatment for the determination of the Thermodynamic parameters
E12 and A12. In addition it is necessary to consider the great difference in the order
of magnitude of both parameters that complicates extraordinarily the success in the
application of the method of treatment. (ii) the experimental points (T/t) must satisfy
to this hyperbolic function and therefore, it is necessary to reproduce the profile of the
curve of the function (T/t) (12) with the points obtained in the laboratory.

2. function of polynomial type of n-th degree

T =
j=n∑

j=0

a j t
j (15)
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or even, we can propose a first order polynomial, that is, a lineal function (T =
T0 + a0 t)

− (1/|ν1|) ln α1 =
∫ t

0
A12e−E12/R[(1/

∑ j=n
j=0 a j t j )]dt (16)

This equation does not have mathematical exact solution since the integration cannot
be performed. We have 2 options of treatment: (a) performing a numerical integration
of the Eq. (13) using appropriate quadrature formulas applying a suitable numerical
algorithm for the resolution of integrals (Simpson, Lobatto, Gauss-Kronrod, Vector-
ized, etc.), and (b) numerical resolution directly from the beginning of the ordinary
differential equation (7) expressed in terms of Arrhenius’s equation, that is:

d [B1] = − [B1] A12e−E12/RT dt (17)

The solution of this differential equation can be performed by means of the application
of numerical methods that they must be suitable for the treatment of stiff systems
(Runge–Kutta methods, Gear’s method (BDFs), Rosenbrock formula, trapezoidal rule
with “free” interpolant…etc).

In the case of the determination of the ATP’s parameters involved in the Eyring’s
equation (ΔH �=

12 and ΔS �=
12) the mathematical treatment of the differential rate Eq. (10)

is different with respect to the case of Arrhenius. It can be expressed as:

− (1/ |ν1|) ln α1 =
t∫

0

(kB/h)T e−�H �=
12/RT e�S �=

12/Rdt (18)

The solution of the integral in the second member of (18) depends of the type of
the explicit function T = f(t) used. We discard the inverse function of the temper-
ature corresponding to a hyperbolic branch (12) because in this case is not possible
a mathematical exact solution of the integral. Therefore, we consider exclusively the
polynomial function of n-th degree (15) and the treatment to be performed is identical
than the case of Arrhenius’s equation. We consider 2 options: numerical integration
of the equation using appropriate quadrature formulas and the numerical resolution
directly from the beginning of the (ODE) (18), by means of the application of methods
suitable for the treatment of stiff systems.

d[B1] = −[B1](kB/h)T e−ΔH �=
12/RT eΔS �=

12/Rdt (19)

2.1.2 Solution of the other ODE system differential equations

The remaining differential equations that constitute the system (6) for the substances
B2 and B3, are:

d[B2]/dt = k12 (T ) [B1] − k23 (T ) [B2] (20)

d[B3]/dt = k23 (T ) [B2] (21)
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which resolution in isothermal conditions lead to the solutions:

[B2] = [B1]0 k12

k23 − k12

(
e−k12t − e−k23t

)
(22)

[B3] = [B1]0

(
1 − k23

k23 − k12
e−k12t + k12

k23 − k12
e−k23t

)
(23)

However, if non-isothermal conditions are considered and after substituting k12 (T )

and k23 (T ) on Eqs. (20) and (21) based on the Arrhenius and Eyring’s functions, these
differential equations do not provide us an exact mathematic solution. In conclusion,
there is non-explicit functions of α2(ti ) and α3(ti ) depending of ATP parameters and
time. The solutions are exclusively numeric ones, what it means only discrete values of
α2(ti ) and α3(ti ) can be determined for each time value. For that reason, it is necessary
to determine k12(Ti ) y k23(Ti ) for each value of Ti , by substituting the ti values on the
following equations:

k12 (Ti ) = A12e−E12/R
∑ j=n

j=0 a j t
j

i

= (kB/h)

j=n∑

j=0

a j t
j

i e−ΔH �=
12/R

∑ j=n
j=0 a j t

j
i eΔS �=

12/R (24)

k23 (Ti ) = A23e−E23/R
∑ j=n

j=0 a j t j
i

= (kB/h)

j=n∑

j=0

a j t
j

i e−ΔH �=
23/R

∑ j=n
j=0 a j t j

i eΔS �=
23/R (25)

It is important to consider that the values of A12, E12,ΔH �=
12 andΔS �=

12 are previously
known from the application of ANN method. These values are involved in Eq. (24)
and they must be constant in the later process of determination and optimization of
A23, E23,ΔH �=

23 and ΔS �=
23 by means of complete application of HA to Eq. (25). Finally

the numeric values of α2(ti ) y α3 (ti ) are determined by the Eqs. (22) and (23).

α2(ti ) = k12(Ti )

k23(Ti ) − k12(Ti )

(
e−k12(Ti )ti − e−k23(Ti )ti

)
(26)

α3(ti ) =
(

1 − k23(Ti )

k23(Ti ) − k12(Ti )
e−k12(Ti )t + k12(Tti )

k23(Tti ) − k12(Tti )
e−k23(Ti )ti

)
(27)

These 2 sets of kinetic value pairs [α2(ti )/ti ] and [α3(ti )/ti ] are going to constitute
the data of the input curves for their treatment with the HA, which it will provide us
all the ATP’s values A12, A23, E12, E23,�H �=

12,�H �=
23,�S �=

12 and �S �=
23.

2.2 Hybrid Algorithm: HA (ANN-AGDC)

The application of Hybrid Algorithm (HA) to kinetic system of consecutive reactions
has been carried out by 2 different procedures, depending if it is implemented into the
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resolution of the 1st differential equation (7) from the 3 equations of the ODE system
(6), or into the resolution of the other 2 differential equations of the system:

I. Resolution of the 1st differential equation of the ODE system (6).
The treatment of α1 /t data pairs is accomplished in order to determine the ATP

parameters’s A12, E12,ΔH �=
12 and ΔS �=

12, by following 2 different steps:
(1) Method ANN. The input data are constituted by a matrix of curves (α1 /t) of

synthetic kinetic data endowed with “noise” and 2 targets matrices, which contain
the ATP’s values for each curve consistently distributed on the basis of the appropri-
ate Experimental Design. The results are 2 outputs matrices composed by the ANN
obtained values of the former 4 ATP parameters, which will be the initial estimates
for the following step.

(2) AGDC algorithm. The values of the 4 ATP parameters are optimized by imple-
menting the numeric algorithm AGDC adapted to the considered cases and depending
on the type of T/t function chosen. The matrix of curves (α1 /t) is used as input data
and the 4 ATP parameters, determined by the previous ANN method application, as
initial estimates. The final solutions obtained by the HA application are the optimized
values of the 4 parameters A12, E12,ΔH �=

12 and ΔS �=
12.

II. Resolution of the other 2 differential equations of the ODE system
The treatment of α2 /t and α3 /t data pairs is performed in order to determine all

the ATP parameters. The whole procedure comprises 2 steps:
(1) Method ANN. The input data is constituted by the curves’ matrix of the kinetic

pairs α2 /t and α3 /t of synthetic data with noise and the 2 targets matrices constituted
by the values of ATP’s A12, E12, A23, E23 (Arrhenius) and ΔH �=

12 ΔS �=
12, ΔH �=

23, ΔS �=
23

(Eyring), respectively. These 2 matrices contain 2 types of ATP parameters: (a) the
ones with subscripts (12), which values were optimized by the application results
from procedure I and will remain constant and invariable (24) along the steps of the
procedure II. (b) the ones with subscripts (23), which values will be conveniently
modified—Eq. (25) for the determination from ANN and the optimization by AGDC.
The solutions are 2 outputs matrices that contain the values of ANN determined from
the 2 sets of 4 ATP Arrhenius and Eyring parameters (8 in total) and will be the initial
estimates for the following step of the process.

(2) AGDC algorithm. The numeric algorithm AGDC, is applied depending on
the kind of T/t function in order to optimize the 4 ATP parameters with subscripts
(23),that is, A23, E23 ΔH �=

23, ΔS �=
23 By way of explanation, the AGDC iterative process

starts up with the initial estimates values of the parameters. Although the 4 ATP
parameters with subscripts (12) are not modified, the other 4 ATP ones with subscripts
(23) are determined and optimized by the ANN and AGCD sequential processes.
The final solutions after application of the HA are the values of 8 ATP parameters
(A12, A23, E12, E23,�H �=

12, �H �=
23 �S �=

12 and �S �=
23).

2.2.1 Artificial neural networks

Artificial Neural Networks are parallel interconnected networks of simple computa-
tional elements called neurons and are structured in layers that are intended to interact
with the objects of the real world in a similar way to the biological nervous systems

123



1090 J Math Chem (2015) 53:1080–1104

[20]. Parallel processing is the ability of the brain to simultaneously process incoming
stimuli of differing quality. The multilayer neural network uses sets of input data and
parameters (called targets), distributed in 2 input matrices when Matlab [21] is applied.
The elements of the input matrix are the calculated synthetic values, where one row
contains a single curve of the data and all the curves thus obtained (nc) are grouped in
an input data matrix. The target matrix is formed by the sets of parameters (np). In our
case, the input data matrix contained the kinetic data of all curves (αj, AT, Aj, [Bj])
and the target matrix (nc × np) contained the set of kinetic rate constants (kmn). For-
mally, a multilayer neural network is an oriented graph in which the nodes represent
a set of processing units, called neurons, and the connections represent the informa-
tion flow channels. Each connection between two neurons has an associated value
called weight which specifies the strength of the connection between neurons. Posi-
tive and negative values determine excitatory and inhibitory connections, respectively.
The choice of a specific class of networks for the approximation of a nonlinear map
depends on a variety of factors dictated by the context and is related to the desired
accuracy and the prior information available concerning the input–output pairs.

The first layer of a multilayer neural network contains neurons that receive the
input data values from the elements of the input data matrices. This information is
transmitted from the i-th neuron of a layer to the j-th neuron of the subsequent one,
with a weight wji. A neuron parameter (bias) is summed with the weighted inputs
of the neurons and passed through the transfer function to generate the output of the
neurons.

The layer following the input one is called hidden In each neuron of a hidden layer
the weighed inputs coming from the previous one are summed with each other and
added to a bias. The result is then transformed by means of a suitable mathematical
function to obtain an output called activation of the neuron, which is transferred to the
neurons in the next layer after another weighing step. The output parameters values
are calculated in the last layer (output layer) by means of a suitable transformation
function.

The process described is called to as the training orlearning of the multilayer neural
network and constitutes an iterative method where the iterations are called epochs.
After each epoch, the calculated values of the parameters are grouped in the output
matrix (boutput

i j ) and they are compared with those of the corresponding curve in the

target matrix (btarget
i j ) and the optimum value of the Mean Squared Error (MSE),

expressed in absolute value, is calculated according Eq. (28)

M SE =
(∑n p

i=1

∑nc
j=1(b

output
i j − btarget

i j )2

n p · nc

)1/2

(28)

where nc is the input number of curves and np is the number of parameters, nc × np
being the dimensions of both matrices (output matrix and target matrix).

During the process of training, weights and bias values are modified with suitable
mathematical optimization algorithms in order to minimize the calculated values of
MSE in each epoch. In the present work, the back-propagation algorithm was used.
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The iterative process finishes when the minimum value of MSE is reached, after which
the training process can be considered to be completed.

It is necessary to know the optimal architecture and topology of the multilayer
neural network in order to obtain the best results when ANN is applied to the system
under study. We have used a method of trial and error by minimizing the MSE val-
ues obtained for the different possible configurations of the same number of hidden
layer/s. It must to determine the minimum value (optimum) of the MSE for all possible
configurations (i.e. in the range between 1 and 12) for the hidden layer/s chosen. For
each hidden layer, a graph of MSE values versus the number of neurons shows that
initially, for the lower configurations, the value of the MSE decreases rapidly when
the number of neurons increases, but after a constant value or a poor improvement
is obtained. The optimum number of neurons (configuration) in that hidden layer is
given by the point of intersection of the two branches of the graph. Sometimes, a small
minimum appears near this intersection point. The architecture of the neural network
can be written in abbreviated notation as (ninp, nhid , nout ), where ninp is the number
of neurons in the input layer, nhid in the hidden layer and nout in the output layer.

Neural network training is completed with the processes of validation and testing
reach satisfactory results. These are 2 control and verification processes of the iterative
minimization method between the elements of the output and target matrices. Among
the different curves comprising the input matrix, random choice is made of a percentage
of the total, established previously (5, 10 %. . .), which gives rise to a “sub-matrix” of
input curves that are subjected to iterative optimization until a minimum MSE value
is reached. It is thus possible to verify the validity of the training process by ensuring
that it is convergent, that it has an appropriate termination, and that there not been any
overfitting, since any possible overtraining has taken been into account. Validation
process is completed when in a given number (≥6) of consecutive epochs the MSE
remains constant or shows a slight tendency to increase. The testing process is similar,
except that the control for terminating the process is performed by controlling the
computation time instead of the number of epochs. The process of prediction consists
of the determination of the unknown parameters from a set of experimental data after
application of the optimal and trained neural network. Obviously, the elements of the
target matrix are unknown for this prediction process, and only the input data matrix is
provided to the neural network. The elements of the input data matrix in the process of
prediction will be experimental kinetic values (αj, AT, Aj, [Bj], etc.) acquired from
a kinetic system of reactions developed at the laboratory.

2.2.2 AGDC algorithm

The AGDC is an algorithm of mathematical optimization based on a second-order gra-
dient method that minimizes, by means of an iterative process, the numerical function
SQD:

SQD (X) =
Nd∑

i=1

((
α j (ti )

)
C − (α j (ti )

)
E

)2 (29)

α j (ti ) = [B j
]

i / [B1]0 (30)
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where X is the vector that contains the parameters to be optimized. In this case the
components of the X vector can be pairs of values of the Activation Thermodynamic
parameters involved IN a first order consecutive reactions system (E12 and A12, �S�=

12

and �H�=
12, E23 and A23, �S �=

23 and �H�=
23). The AGDC algorithm first uses, as the

movement vector, the one indicated by the Gauss–Newton method [3,22]:

p(m) = −g(m)
[
H(m)

]−1
(31)

where p(m), g(m) and [H(m)]−1 are respectively the movement vector, the gradient
vector and the inverse of the Hessian matrix of the iteration m, whose terms are derived
from the function to be minimized (SQD) with respect to each of the parameters to be
determined (X).

If the residuals are given by:

RE Si = (α j
)

C − (α j
)

E (32)

then g(m) and H(m) are given by:

g = 2

⎡

⎢⎢⎢⎣

Nd∑
i=1

RE Si
∂(α j)C

∂ X1

Nd∑
i=1

RE Si
∂(α j)C

∂ X2

⎤

⎥⎥⎥⎦ (33)

H = 2

⎡

⎢⎢⎢⎣

Nd∑
i=1

(
∂(α j)C

∂ X1

)2 Nd∑
i=1

(
∂(α j)C

∂ X1

) (
∂(α j)C

∂ X2

)

Nd∑
i=1

(
∂(α j)C

∂ X2

) (
∂(α j)C

∂ X1

) Nd∑
i=1

(
∂(α j)C

∂ X2

)2

⎤

⎥⎥⎥⎦ (34)

Calculation of the derivatives is performed numerically by means of the central
differences method [23] and the inverse of the Hessian matrix is computed by means
of the MatLab application [21] that computes the inverse of a square matrix using LU
factorization.

The AGDC algorithm performs a rigorous analysis and control of the movement
vector and of each of its terms, and suitable modifications can be made if any errors
are detected, thereby ensuring successful optimization. Once the optimization process
has been achieved, the program determines the errors of the optimized parameters [24]
and performs an exhaustive analysis of the residuals thus allowing the goodness of fit
to be checked [25].
Schematically the AGDC algorithm can be written as follows:

Iteration m → Input data: X(m), SQD(m).

1. Calculate the vector of movement.
1.1. Compute partial numerical derivatives of (αj)C with respect to the parameters

to be determined Xp,
(
∂
(
α j
)

C /∂ X p
)(m).

1.2. Compute Gradient vector and Hessian Matrix (g(m) and H(m)). (33), (34).
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1.3. Compute (H(m))−1.
1.4. Calculate the components of the vector of movement p(m) (31).

2. Control and correction of the direction of the vector of movement p(m).
2.1. If H(m) is singular, p(m) = −g(m), go to 3.
2.2. If p(m) g(m) < ε (ε = scalar close to zero), p(m) = −g(m) and go to 3.
2.3. If p(m) g(m) > 0, p(m) = −p(m).

3. Control the length of the vector of movement p(m).
3.1. Compute the scalar (λ(m)) by the method of Hartley [3].
3.2. X(m+1) = X(m) + λ(m)p(m).
3.3. Determinate the SQD(m+1) function (29).
3.4. If the Goldstein–Armijo criterium [22] is satisfied go to 4.
3.5. λ(m) = λ(m)/2 go to 3.2.

4. Calculate:

C O N =
∣∣∣∣
SQ D(m+1) − SQ D(m)

SQ D(m)

∣∣∣∣ (35)

5. If convergence is not attained (CON > CC), set m = m + 1 and go to 1.
6. X(m+1) = Optimized Parameters.
7. END optimization.

The procedure followed to carry out the optimization of the activation parameters
is schematically expressed as follows:
0. Input data: Experimental data of (αj)E/ti, [Bj]0, Convergence Criteria(CC), Initial

estimates of the unknown parameters X(0)
(

E(0)
12 , A(0)

12 , �S�=(0)
12 , �H�=(0)

12 , E(0)
23 , A(0)

23 ,

�S�=(0)
23 , �H�=(0)

23

)
(values of outputs from ANN application).

I. Optimization of: E12, A12,�S12
�= and �H12

�=.

Ia. X = [E12, A12] · m = 0. X(0) =
[
E(0)

12 , A(0)
12

]
.

Ia1. Calculate (α
(0)
1 )C (30).

(i) T = f(t) inverse hyperbolic (12)→ Mathematical exact solution (14).
(ii) T = f(t) polynomial of n-th degree (15) → Numerical integration of

(16) or Numerical solution of the rate differential equation (17).
Ia2. Calculate SQD(0) (29).
Ia3. AGDC Algorithm.
Ia4. Optimized parameters: X∗ =[E12, A12] → Calculate the errors of

E12, A12.

Ib. X =
[
�S �=

12, �H�=
12

]
. m = 0. X(0) =

[
�S�=(0)

12 , �H�=(0)
12

]
.

Ib1. Calculate (α
(0)
1 )C (30): T =f (t) Polynomial of n-th degree (15)→ Numeri-

cal integration (18) or Numerical solution of the rate differential equation.
Ib2. Calculate SQD(0) (29).
Ib3. AGDC Algorithm.

Ib4. Optimized parameters: X∗ =
[
�S�=

12, �H�=
12

]
→ Calculate the errors of

�S�=
12�H�=

12.
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II. Optimization of: E23, A23, �S23
�= and �H23

�=.

IIa. X =[E23, A23] · m = 0.X(0) =
[
E(0)

23 , A(0)
23

]
.

IIa1. Calculate
(
α2(ti)(0)

)
C ,
(
α3(ti)(0)

)
C(30).

(i) Calculate Ti =∑ j=n
j=0 a j,i t

j
i

(ii) Calculate k12 (Ti ) = A12e−E12/R
∑ j=n

j=0 a j t j
i

(iii) Calculate k23 (Ti ) = A(0)
23 e−E (0)

23 /R
∑ j=n

j=0 a j t j
i

(iv) Numerical solution of the rate differential equations (20), (21).
IIa2. Calculate SQD(0) (29).
IIa3. AGDC Algorithm.
IIa4. Optimized parameters: X∗ =[E23, A23] → Calculate the errors of

E23, A23.
IIb. X = [�S23

�=, �H23
�=] m = 0 · X(0) = [�S23

�=(0), �H23
�=(0)].

IIb1. Calculate (α2(ti)(0))C, (α3(ti )(0))C(30).

(i) Calculate Ti =
j=n∑
j=0

a j,i t
j

i

(ii) Calculate k12 (Ti ) = (kB/h)
∑ j=n

j=0 a j t
j

i e−�H �=
12/R

∑ j=n
j=0 a j t j

i e�S �=
12/R

(iii) Calculate k23 (Ti )=(kB/h)
∑ j=n

j=0 a j t
j

i e−�H �=(0)
23 /R

∑ j=n
j=0 a j t j

i e�S �=(0)
23 /R

(iv) Numerical solution of the rate differential equations (20), (21).
IIb2. Calculate SQD(0) (29).
IIb3. AGDC Algorithm.
IIb4. Optimized parameters: X∗ =[�S�=

23, �H�=
23] → Calculate the errors of

�S�=
23, �H �=

23.
III. Statistical analysis of Residuals.

3 Computational aspects

The general computational treatment of ANN by means of the application of Matlab
“Neural Networks Toolbox” with the creation of user’s interfaces (GUI) including the
appropriate analysis of Residuals and errors (MSE, SD, etc). In case of the numerical
resolutions directly from the beginning of the ordinary differential equations (ODE),
we have implemented mainly the followings Matlab functions: (a) ode45, based on
an explicit Runge–Kutta formula, the Dormand–Prince pair. It is a one-step solver.
In computing y(tn), it needs only the solution at the immediately preceding time
point, y(tn−1). (b) ode23s is based on a modified Rosenbrock formula of order 2.
Because it is a one-step solver, it can solve some kinds of stiff problems for which
other are not effective; (c) ode23t is an implementation of the trapezoidal rule using a
“free” interpolant (d) ode23tb is an implementation of TR-BDF2, an implicit Runge–
Kutta formula with a first stage that is a trapezoidal rule step and a second stage
that is a backward differentiation formula of order two and (e) ode15s is a multistep
solver, variable order solver based on the numerical differentiation formulas (NDFs).
Optionally, it uses the backward differentiation formulas (BDFs, also known as Gear’s
method. The numerical integrations have been performed using appropriate quadrature
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formulas corresponding to a suitable numerical algorithms of resolution of integrals
(Simpson, Lobatto, Gauss-Kronrod, Vectorized, etc.). With respect to computational
application of AGDC algorithm, the program named KINNOISOT(AGDC), has been
designed and performed in our laboratory by means of a computational executable
codes (##.m type), in the Matlab environment using “M” language. The program is
constituted by a Main program and several Functions or Subroutines.

4 Results and discussion

4.1 Analysis of the functions T/t and α/t

On the basis of the foregoing considerations, different types of functions T = f(t)
have been used depending on the differential equation to be solved and/or the group
of parameters to be determined. However, all of them have to fulfill the following
requirements: (a) the functions must be monotonically increasing, in order to minimize
the huge differences existing in the reaction rate of isothermal kinetics between the start
and the end of the reaction (b) the increment in temperature produced in the interval
of time values of non-isothermal kinetic data acquisition must be the appropriated one
to achieve an extent of reaction of 75 % for α values of at least 2 half-lives. That leads
to choose an appropriate rate of heating for each time value (c) the function must be
accessible to experimentation and exactly reproducible in the laboratory. That is, the
T values which are provided by the theoretical function T = f(t), have to be reached
for each time value of the selected experimental interval.

We have selected the following functions:
1. function of polynomial type of n-th degree (15), without exact mathematical

solution for the rate differential equations in which α2 and α3 are involved [(24), (25)]
and Arrhenius and Eyring equations are considered;

2. inverse function corresponding to a hyperbolic branch (12) only for α1 and
Arrhenius equation,which permits to reach an exact mathematical solution for the rate
differential equation.

The profiles of graphic plots of curves synthetically generated from inverse hyper-
bolic function show that as the value of “m” of Eq. (12) decreases a smoothing
of the concavity of the hyperbolic branch is observed, tending towards linearity.
The suitable value, and the one that satisfies the 3 requisites considered above, is
m = 4.20 10−6 K−1 min−1. We fitted the T/t points to a first-degree polynomial func-
tion and then progressively to polynomials from 2nd to 5th degree, observing that the
coefficients of the independent variable had negligible values with respect to the value
of α1 from the quadratic term. The values of the Statistical Analysis of Residuals show
that the linear fitting can be taken as correct. This means that the T/t data pairs generated
with the inverse hyperbolic function with a value of m = 4.20 10−6 K−1 min−1 can be
satisfactorily fitted to a linear function. That is to say, the hyperbolic values of T can
be emulated by means of a linear function and can be applied to the case of α1 values
when the Arrhenius equation is considered. At the laboratory, this allowed us to impose
a linear heating rate (slope of 0.3734 K min−1), starting (t = 0) at T = 298.15 K.

The profiles of the non-isothermal kinetic curves for all species (α1 /t, α2 /t and
α3 /t) sometimes show concave down segments while the isothermal curves are always
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concave up. This can be explained in terms of the notion that in non-isothermal curves
there are two opposing phenomena that affects the reaction rate: the increase in temper-
ature with time increases the reaction rate, and the logical decrease in the concentration
of reagents as they are consumed reduces it. Depending on which of the two phenom-
ena predominates, one concavity or the other will be observed and even when both
effects are balanced quasi-linear profiles appear.

4.2 Experimental design (ED)

The application of the computational method ANN demands to perform an appropri-
ate previous organization of the experiments on the basis of the Experimental Design
(ED). In the present work, we have chosen the most suitable one, the Central Star Com-
posite Experimental Design (CSCED). The factors are formed by the set of parameters
A12/E12 and A23/E23 for the Arrhenius equation and �H �=

12/�S �=
12 and �H�=

23/�S�=
23

when the Eyring equation is considered. The responses are the non-isothermal kinetic
data of the base of the input curves (α1 /t, α2 /t , and α3 /t). It is necessary to con-
sider 2 variables: (a) the extreme values of both factors in each of the 4 sets, which
configure the experimental domain and (b) the relative values of each pair of ATP’s
parameters. Both variables must ensure that the binary combinations of the factors
will generate a set of kinetic curves that will have sufficient information to ensure an
optimal training process of the neural network. The number of levels of the factors of
the ED must be suitable to avoid useless computational work and large differences in
the spacing of the values of the responses. Accordingly, to optimize the ANN training
process the kinetic curves of the input matrix must have efficient kinetic information
and must be correctly distributed according to the choice of a suitable experimental
design and an appropriate experimental domain. In agreement with the results of the
study of the functions T = f(t), we have generated the non-isothermal kinetic data
for both equations (Arrhenius and Eyring) in order to obtain the curves of the input
matrix to perform the training process of the neural network from the ATPs organized
according to the Experimental Design (ED) (Fig. 1).

4.3 Application of HA: results and discussion

The training process of the neural network is crucial in order to know its optimal
architecture, which will guarantee the success of the ANN treatment. After testing
a large set of different network topologies for the treatment of the kinetic system
of consecutive reactions, we selected the one that provides the best results since this
network architecture is the optimal architecture. The training processes, carried out
for the 8 parameters by using the computation of the three kinetic curves (α1 /t; α2 /t
and α3 /t), have the following characteristics in common: input matrices formed by 45
non-isothermal kinetic curves with 50 pairs of kinetic data (α1 /t) for the first reaction
and 100 pairs (α2 /t and α3 /t) for the second one; value of the random noise of the order
of the experimental error (±1.0 10−4); time interval to reach a 75 % extent of reaction;
function T/t of hyperbolic branch type (m = 4.2 10−6 K−1min−1), only in the case
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Fig. 1 Experimental Design (CSCED) constituted by 2 factors (A12/E12) and 45 points distributed in 9
levels (points 1–37) and 4 sub-levels: (points 38–45) taking part in the curve base of the input matrix used
for the training process of the neural network

of the first reaction for the Arrhenius equation (A12 y E12) and the polynomial type
for both reactions and both equations (Arrhenius and Eyring) while the 6 remaining
parameters are determined (A23, E23, �H�=

12, �S�=
12, �H�=

23 and �S�=
23).

We have carried out the training of the neuronal networks of the ANN treatment,
using the same computational conditions for the 8 parameters grouped in pairs. They
are the following ones: regarding to the back-propagation algorithm, we selected
the Levenberg–Marquardt type for all the parameters because it provides the best
optimized results for the output and target matrices; we have chosen 80/10/10 values
for the percentages of computed data on the training/validation/testing processes,
respectively; we considered a systematic variation of the number of hidden layers
and their configurations (number of nodes) testing a complete set of possibilities for
the topology of the neuronal networks in order to strictly determine their optimal
architecture.

However we have confirmed the existence of a notorious ambiguity in the attained
result that merits a detailed comment to avoid leading to wrong conclusions. Consid-
ering the graphic plots of the results of the training, validation and testing (“ALL”)
processes (Fig. 2) for a neuronal network with optimal structure (100,2,2) and con-
figuration (14–10), we calculated �H�=

23 and �S�=
23 On this graphic, obtained from the

simultaneous plot of both parameters, we determined a Regression line: Output =
1.00xTarget + 1.30 10−6, with a value of R = 0.99999 that corresponds to a good
linearity among the elements of the output/target matrices. Therefore, these results
would be initially acceptable. However, some important considerations must be taken
into account: the values of the parameters, which their order of magnitude is very
different (�H�=

23 ≈ 104 and �S �=
23 ≈ 102), are represented on the same scale, so the

points show up on the graphic, forming 2 groups separated by a long distance between
them. In addition, all the corresponding values to �S�=

23 are superimposed on the same
point. This situation masks the real effects of dispersion, causing that the output/target
Regression straight and the linear fitting parameters, obtained when both ATP parame-
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Fig. 2 Plot of the Regression line for the data from the elements of the output versus target matrices when

both parameters (�H �=
23 and �S�=

23) are represented together for the processes of training, validation and
testing (ALL) when ANN is applied to a neural network endowed with an architecture with 2 hidden layers
(100, 2, 2)

ters are represented together on the graphic, are correct. However, when we consider
the output/target Regression lines of each separate parameter by using the appropriate
scale, a huge dispersion for the case of the �S�=

23 parameter (Fig. 3, corresponding to
the superimposed points observed on the Fig. 2) is detected. The obtained values are:
0.1285 for R2, 0.3314 for the slope, (very far away from the value = 1) and 0.0383
for the ordinate at the origin (very different from 0). These values clearly manifest a
very poor output/target correlation, what makes unacceptable the value of �S �=

23 deter-

mined by ANN. Nevertheless, the results achieved in the �H �=
23 case prove to have an

acceptable linearity as it is shown on the Fig. 4.
In conclusion, these values are unacceptable, so it requires the complete applica-

tion of HA to improve the results. That is, the obtained values for ATP’s parameters
after application of ANN method will be the initial estimates for the AGDC gradient
algorithm, which will provide us very acceptable values for the final ATP’s optimized
parameters.

The values of the individual Errors and Standard Deviations of each of the 8 ATP’s
parameter (SD(bi j )) obtained after application of the ANN, with relative output and
target values, can be determined from the following general expression for SD:

SD(bi j ) =
⎛

⎜⎝

∑n p
i=1

∑nc
j=1

[
(bOutputs

i j − bT argets
i j )/(bT argets

i j )
]2

n p.nc

⎞

⎟⎠

1/2

(36)
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Fig. 3 Plot of the Regression line for the data from the elements of the output versus target values when

�H�=
23 is plotted separately for the process of training, validation and testing (ALL) of the ANN when the

architecture of the neural network is constituted by 2 hidden layers (100, 2, 2).The equation obtained is:
Output = 0.9967∗T arget + 0.0015(R2 = 0.9982)
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Fig. 4 Plot of the Regression line for the data from the elements of the output versus target values when

�S�=
23 is plotted separately for the process of training, validation and testing (ALL) of the ANN, when the

architecture of the neural network is constituted by 2 hidden layers (100, 2, 2). The equation obtained is:
Output = 0.3314∗T arget − 0.001(R2 = 0.1285)

where bi j are the ATP’s parameters, nc is the number of curves and n p is the number
of parameters per curve (n p = 1 for the individual error calculation)

We carried out the training process of a large set of neuronal networks considering
all the possible configurations for architectures with 2 and 3 hidden layers, discarding
those of a single layer. In light of the high number of tested cases, we just only show the
best results on the Tables 1 and 2. All of them were obtained from the most significant
configurations of the curves corresponding to the central point of the 45 curves of the
ED. The value pairs of outputs, A23/E23 and �H�=

23/�S �=
23, and the deviations in %

(Dev.%) respect to the values used to generate all the data, are showed on the first part
of the Tables 1 and 2. In addition, the second part of the Tables shows the values of
the optimized parameters after applying AGDC and the deviations in % (Dev.%) of
the real values. After completing the whole application of HA we observed a great
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Table 1 Results of the training process of neural networks constituted by architectures with 2 and 3 hidden
layers and several configurations, when E23 and A23 are computed

ANN ANN + AGDC

Config A23

(105 min−1)

E23

(104 J mol−1)

Dev.%
(A23)

Dev.%
(E23)

A23

(105 min−1)

E23

(104 J mol−1
Dev.%
(A23)

Dev.%
(E23)

10/10 4.9626 4.2496 0.7466 0.0071 4.9740 4.2486 0.5207 0.0318

10/11 5.0512 4.2622 −1.0254 −0.2891 5.1192 4.2561 −2.3840 −0.1439

10/12 4.9752 4.3018 0.4959 −1.2200 5.0831 4.2543 −1.6619 −0.1003

10/14 4.9690 4.2858 0.6190 −0.8433 5.1641 4.2584 −3.2818 −0.1966

13/10 5.0672 4.2647 −1.3457 −0.3472 5.1469 4.2575 −2.9384 −0.1769

15/10 4.9809 4.2945 0.3814 −1.0470 5.1079 4.2356 −2.1979 −0.1326

20/10 5.0490 4.3250 −0.9813 −1.7665 5.0012 4.2501 −0.0235 −0.0016

7/10/10 5.0028 4.3079 −0.0576 −1.3625 5.0838 4.2543 −1.6762 −0.1017

9/10/10 5.1849 4.1884 −3.6988 1.4479 4.6510 4.2313 6.9801 0.4399

This table shows the obtained results of the ATP’s parameters and their % deviations (Dev.%) when applying
the algorithms ANN and HA (ANN+AGDC)

improvement just by comparing the values of Dev.%, (columns 8th and 9th) of both
parameters with the ones calculated by the ANN application (columns 4th and 5th).

The improvement in the values of ATP’s parameters is much better appreciated on a
joint plot (Fig. 5) of the Residuals of α2, calculated by using the values of parameters
�H�=

23/�S�=
23, which were obtained from the ANN application (37), and the values

determined by the HA algorithm application (38). In Fig. 5 we can appreciate this
improvement, which maximum value is produced when a 40 % extent of reaction is
reached by comparing the values of Res(α)H A = 0.0013 and Res(α)AN N = 0.388.

[Res(α)AN N = αsynt − αcal(AN N )] (37)

[Res(α)H A = αsynt − αcal(H A)] (38)

The prediction process, necessary to determine the final optimized parameters, con-
sists in the application of HA to new kinetic curves, different from the considered ones
at the training processes of neuronal networks. These new ones have been generated
from ATP value pairs within the maximum intervals defined in the ED. The prediction
constitutes the final process of the HA application to finally determine the unknown
ATP parameters, corresponding to experimental kinetics carried out at the Labora-
tory. The obtained results are the value pairs of the parameters E23/A23 (Table 3) and
�H�=

23/�S�=
23 (Table 4). As for the prediction process, carried out after the ANN appli-

cation, we used the optimal neuronal network after carrying out exhaustive processes
of training, computing a base of 8 kinetic curves, the most suitable number to perform
a multiple and simultaneous prediction of the ANN initial stage. After the AGDC algo-
rithm application, we determine the final optimized values of the parameters, resulting
from the complete application of the HA algorithm and the Dev.% between the Opti-
mized Values and the ones used in the kinetic generation of data. After analyzing all
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Fig. 5 Plot of the Residuals of α2 using the values of the ATP’s parameters (�H �=
23 and �S �=

23) obtained
by applying ANN method [Eq. (37)] and those obtained from Eq. (38) after the application of the complete
algorithm HA

Table 3 Results of the 4 prediction processes in the case of the optimal architecture of neural network
(100, 2, 2) when Arrhenius equation is considered and A23/E23 values are predicted, after application of
HA (ANN+AGDC)

HA Algorithm (ANN + AGDC)

Real
values (A23)

(105 min−1)

Real
values (E23)

(104 J mol−1)

Optimized
values (A23)

(105 min−1)

Optimized
values (E23)

(104 J mol−1)

Dev.% (A23) Dev.% (E23)

5.0830 4.0306 5.7654 5.3756 30.0620 −17.3260

4.9202 4.1031 3.6072 4.1655 27.8558 1.9876

5.0173 4.0928 5.0621 4.0925 −3.2565 5.5473

4.9789 4.2181 5.0090 3.9874 5.3773 0.3499

Real and optimized values can be compared after evaluation of the values of their deviations (Dev.%)

Table 4 Results of the 8 prediction processes in the case of the optimal architecture of neural network

(100, 2, 2) when Eyring equation is considered and �H�=
23/�S�=

23 values are predicted, after application of
HA (ANN+AGDC)

HA algorithm (ANN+ AGDC)

Real
values (�S �=

23)

(J K−1 mol−1)

Real
values (�H �=

23)

(104 J mol−1)

Optimized
values (�S�=

23)

(J K−1 mol−1)

Optimized val-
ues (�H�=

23)

(104 J mol−1)

Dev.% (�S �=
23) Dev.% (�H�=

23)

−159.5642 4.3408 −158.1711 4.2976 −0.9136 0.9999

−163.8140 4.7031 −166.6814 4.7811 1.6402 −1.8692

−152.7474 4.3832 −155.5510 4.4701 1.7222 −1.9387

−150.1146 4.4330 −156.0480 4.5482 2.4209 −2.6887

−159.0111 4.6072 −163.3297 4.6994 1.7745 −2.0446

−150.1152 4.4734 −158.5474 4.5650 1.8465 −2.0531

−153.2067 4.5551 −159.5911 4.7207 3.0962 −3.4960

−152.6486 4.5172 −1579356 4.6775 3.1664 −3.5481

Real and optimized values can be compared after evaluation of the values of their deviations (Dev.%)
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Table 5 Final values of the 8
ATP’s parameters

(A12, E12, A23, E23, �H�=
12,

�S�=
12, �H �=

23 and �S �=
23)

obtained after application of the
HA and their optimal
architecture and configurations
(nodes) of the neural networks
used in the ANN treatment

(1) min−1, (2) J mol−1, (3)
J mol−1, (4) J mol−1K−1

ATP Optimun
architecture

Nodes HA final values

A12 (50,3,2) 10/20/10 1.106 (1)

E12 (50,3,2) 10/20/10 41840 (2)

�H �=
12 (50,3,2) 10/9/10 38285 (3)

�S �=
12 (50,3,2) 10/9/10 −172.7 (4)

A23 (100,2,2) 20/10 5.105 (1)

E23 (100,2,2) 20/10 42500 (2)

�H �=
23 (100,2,2) 14/10 45172 (3)

�S �=
23 (100,2,2) 14/10 −163.1 (4)

the values of the Statistic moments of errors [SD(bi j )] and Dev.%, according to Eq.
(37), and (38), we can easily know the optimal architecture in terms of structure and
configuration of the hidden layers used to determine the 8 ATP parameters and their
values (Table 5).

5 Conclusions

The obtained results of the HA application demonstrate its great robustness when it
is applied to the calculation of the ATP’s parameters of the kinetic system of the first
order consecutive reactions. Additionally, the HA embodies a satisfying versatility,
providing evidences of its applicability to other models and kinetic systems in order
to obtain other kind of kinetic parameters. The great advantage of HA is the efficient
resolution of the ambiguity of the results determined by ANN: not only discriminates
between the pairs of parameters obtained in the output matrices, but also calculates
their individual values with considerable accuracy and precision. Furthermore, the
exhaustive control and corrections performed over the movement vector, solves other
weak point of the classic optimization algorithms avoiding the possibility of being
trapped at local minima, saddle points...etc. This allows to AH successfully deter-
mine the values of the 8 ATP’s parameters involved in the studied kinetic system
(A12, E12, A23, E23, �H�=

12, �S �=
12, �H�=

23 and �S �=
23), of which high-number of para-

meters and very different orders of magnitude make the task extremely complicated
for the classic algorithms of mathematical optimization.

The lack of necessity to know a priori the order of magnitude and the sign of
the 8 parameters represents another important advantage. Therefore, the initial ANN
treatment provides the values of the all ATP’s parameters used by AGDC as initial
estimates. In addition, the computational application, in which the HA is implemented,
doesn’t present difficulties to non-expert users.

Finally, in comparison with the isothermal kinetics, the evaluation of non-isothermal
kinetics produces evident advantages in the experimental aspect, generating significant
savings both in reagents and laboratory time. This allows one to perform only one
replicated non-isothermal kinetic since it is sufficient for the computational treatment
with the HA proposed in this paper.
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